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Abstract—API documentation, technical blogs and program-
ming Q&A sites contain a large amount of partial code that can
be reused in programming tasks. However, due to unresolved
simple names and last-mile syntax errors, such partial code
is frequently not compilable. To facilitate partial code reuse,
we develop PCR-Chain for resolving FQNs and fixing last-mile
syntax errors in partial code based on a giant pre-trained code
model (e.g., Copilot). Methodologically, PCR-Chain is backed up
by the underlying global-level prompt architecture (which com-
bines three design ideas: hierarchical task breakdown, prompt
composition including sequential and conditional structures, and
a mix of prompt-based AI and non-AI units) and the local-
level prompt design. Technically, we propose PCR-Chain, which
employs in-context learning rather than supervised fine-tuning
with gradient updates on downstream task data. This approach
enables the frozen, giant pre-trained code model to learn the
desired behavior for a specific task through behavior-describing
prompts and imitate it to complete the task. Experimental results
show that PCR-Chain automatically resolves the FQNs and fixes
last-mile syntax errors in 50 partial code samples collected from
Stack Overflow with high success rates, without requiring any
program analysis. The correct execution of the unit, module, and
PCR-Chain demonstrates the effectiveness of the prompt design,
prompt composition, and prompt architecture.

Website:https://github.com/SE-qinghuang/PCR-Chain
Demo Video: https://youtu.be/6HGRNdc2 JE
Index Terms—In-context Learning, Pre-trained Language

Model, Frozen Copilot, AI Chain, Hierarchical Prompts

I. INTRODUCTION

Partial code from API documentation and Q&A site (e.g.,
Stack Overflow) is frequently reused in programming tasks
[1]–[6]. This partial code cannot be compiled because it
contains non-fully qualified names (non-FQNs) [7]–[11] and
undeclared receiving objects (termed as cannot-be-resolved
simple names), as well as last-mile syntax errors [12] (e.g.,
unbalanced parentheses, missing commas, missing quotes).
Normally, developers manually repair partial code in two steps:
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FQN Inference (i.e., infer the missing FQNs) and Syntax Error
Fix (i.e., check and fix last-mile syntax errors).

However, the two steps can be completed with partial
program analysis techniques. For example, [13] makes type
inferences based on abstract syntax tree, and [12] fixes syntax
errors based on program synthesis. Recently, studies [14]–
[17] on code naturalness shows code can be seen as text,
and spawns a surge of pre-trained code models (PCMs) (e.g.,
CodeBERT [18], CodeT5 [19], Copilot [20]). By gradient-
updating the weights of PCMs on a small set of instruction-like
prompts, which are text strings with some unfilled slots, the
task-agnostic PCMs adapt to specific tasks [18], [21]. This is
known as supervised fine-tuning [22]–[25]. Once fine-tuend,
the PCMs can fill in the missing information and produce
the final output, as seen in studies like FQN-prompt-tuning
applied to CodeBERT for FQN inference [7] and a fine-tuned
programming language model fixing the syntax errors [26].

In contrast, there is a much more lightweight approach:
in-context learning proposed by Brown et al. [27]. It uses
behavior-describing prompts that describe the task and pro-
vide input-output examples, allowing giant PCMs with frozen
weights to imitate the desired behavior and complete down-
stream tasks solely on the examples [28]–[31]. For example, in
a question-answering task, the prompt might state, “The input
is a question and the output is an answer to the question.”
along with examples of questions and answers. When fed to
the frozen PCM, it can answer new questions by mimicking
the behavior characteristic described in the prompt, without
any weight updates [32]–[34].

In this paper, we use in-context learning to solve the
problem of Java partial code not being compiled directly
when reused, as shown in Fig. 1. First, we divide Partial
Code Repair into FQN Inference and Syntax Error Fix. FQN
Inference is further subdivided into SimpleName Extraction,
SimpleName to FQN, and FQN Supplement, while Syntax
Error Fix is subdivided into Code Check and Code Fix. This
is a hierarchical task breakdown where the bottom tasks are
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Fig. 1. Prompt Architecture and Design for PCR-Chain.

units and the non-bottom tasks are modules. Furthermore, the
sequential structure is reflected in the execution of Simple-
Name Extraction, SimpleName to FQN, and FQN Supplement;
the conditional structure is reflected in the execution of Code
Fix, which is conditioned on the result of Code Check. Second,
driven by in-context learning, we create a prompt (as shown in
Fig. 1) on frozen Copilot (a frozen giant PCM) for each task
at the bottom. This prompt depicts the current task’s behavior
characteristics, which Copilot then automatically imitates to
finish the task. That is, each unit that performs the bottom
tasks is prompt-based AI-driven.

Inspired by the above practice, at the global level, we
propose a prompt architecture that fuses three design ideas:
hierarchical task breakdown (i.e., divide a module into sub-
modules or units from top to bottom), prompt composition
(i.e., connect modules or units in a sequential or conditional
structure), and a mix of prompt-based AI and Non-AI units
(i.e., design executable AI or non-AI units). At the local
level, we also present a prompt design (i.e., develop a task-
appropriate prompt). Based on the prompt architecture and
design, we develop a partial code reuse tool called PCR-Chain.

We use 50 uncompilable partial codes from SO to eval-
uate the accuracy of each unit, each model, and our PCR-
Chain. Each unit’s accuracy is above 0.82 or up to 0.97 (i.e.,
SimpleName Extraction unit), and each module’s accuracy is
above 0.85. This indicates that either prompt design or prompt
composition design is effective. The PCR-Chain’s accuracy
is 0.70, indicating that the prompt architecture effectively
resolves FQNs and fixes last-mile syntax errors.

This paper makes the following contributions:

• To the best of our knowledge, we are the first to propose
the prompt architecture, which combines three global
design ideas: hierarchical task breakdown, prompt com-
position, and a mix of prompt-based AI and non-AI units,
rather than a simple AI chain.

• We present a prompt design at the local level for gener-

ating a task-appropriate prompt.
• We stand on the frozen giant PCM’s shoulder and use a

lightweight in-context learning method to resolve FQNs
and fix syntax errors in partial code. When compared to
the supervised fine-tuning approach, our method elimi-
nates the need for special model tuning and deployment.

• The successful completion of the unit, module, and PCR-
Chain demonstrates the efficacy of the prompt design,
composition, and architecture, to resolve FQNs and fix
last-mile syntax errors.

II. APPROACH

We design an underlying approach to assist the implementa-
tion of PCR-Chain, which involves a prompt architecture and
a prompt design.

A. Prompt Architecture

The prompt architecture is framed by three design ideas:
hierarchical task breakdown, prompt composition, and a mix
of prompt-based AI and non-AI units.

1) Hierarchical Task Breakdown: This design is based on
function analysis; according to different functions or different
performances of the same function in a given range, the task
can be divided from top to bottom into more fine-grained sub-
tasks, or even a series of executable atomic units. The previous
layer task is refined in the next layer task. Based on this design,
PCR-Chain has the three-layer architecture.

As shown in Fig. 1-layer 1, the root module is Partial Code
Repair that resolves FQNs of simple names and fix last-mile
syntax errors in the partial code so that the incompilable partial
code (i.e., input) becomes compilable code (i.e., output).

As shown in Fig. 1-layer 2, the root module is divided into
two sub-modules because it performs two distinct functions
successively. One sub-module is FQN Inference (i.e, resolve
FQNs of undeclared receiving objects and non-FQNs in partial
code); another is Syntax Error Fix (i.e, check and fix last-mile
syntax errors [12] in the code).



As shown in Fig. 1-layer 3, the first sub-module is further
divided into three units: SimpleName Extraction (i.e., extract
the simple names of undeclared receiving objects and non-
FQNs in the partial code), SimpleName to FQN (i.e., convert
simple names to FQNs), and FQN Supplement (i.e., add import
statements with FQNs at the start of the partial code). The
second sub-module is further subdivided into two units: Code
Check (i.e., determine whether or not the code contains syntax
errors) and Code Fix (i.e., fix the syntax error).

2) Prompt Composition: This is a flexible design that
connects units or modules into a new module with one or more
of sequential or conditional structure. A sequential structure
is a concatenation of modules or units, where the output of
the previous module or unit is the input of the subsequent
one. The conditional structure has a judgment condition and
determines which subsequent module or unit to execute as a
branch based on the outcome of the judgment.

Based on this design, three units in sub-module1 are con-
nected in a sequential structure so that PCR-Chain first extracts
simple names, then converts the simple names to FQNs, finally
adds import statements with FQNs, whereas two units in sub-
module2 are connected in a conditional structure so that PCR-
Chain checks the code and fixes it if it contains syntax errors.

3) Mix of prompt-based AI and Non-AI Units: Two types of
units are designed: one for AI and one for non-AI. The AI unit
is appropriate for some tasks with uncertain execution logic or
fuzzy matching. For example, we can only list some heuristic
rules for extracting entities or entity relations from ever-
changing natural language. Benefiting from the development
of PCMs, syntactic or semantic knowledge packed in the
PCMs can be transferred to the downstream SE tasks with
uncertainty and fuzziness [22]. We implement a prompt-based
AI unit using in-context learning, that is, we employ a prompt
to a giant PCM (e.g., Copilot [20]) to specify the behavior
characteristics of a downstream task that includes a task
description and/or a few task demonstrations, and then asks the
PCM to complete further instances of the task by mimicking
the behavior characteristics. To quickly configure four prompt-
based AI units (see Fig. 1), we devise a three-step pipeline:

• A prompt is a description and examples that represent the
behavior characteristics of an AI unit task.

• A frozen Copilot is configured for the configured prompt
by setting the frozen Copilot’s parameters, e.g., temper-
ature and maximum token as well as the current prompt.

• The configured frozen Copilot is asked to work by
imitating the behavior characteristics.

The non-AI unit is appropriate for some tasks with certain
execution logic or precise matching, such as pre-processing
(case conversion, camel case naming) and post-processing
(output merging, output verification). We implement a non-
AI unit using a regular program function. FQN Supplement in
Fig. 1 is an example, as it adds the output of the previous AI
unit (import statements with FQNs) at the start of the code.

B. Prompt Design

The prompt is important for in-context learning because a
giant PCM (e.g., Copilot [20]) works by learning the behavior
characteristics depicted in a prompt. Prompt design involves
prompt interaction design and prompt content design.

1) Prompt Interaction Design: As shown in Fig. 1-layer 3,
four prompts are linked in a sequential, conditional structure to
create a human-AI interaction, which is guided by continuous
interaction with the PCM to solve problems like a human.

2) Prompt Content Design: In Fig. 1-layer 3, four prompts
are specialized for four AI units, with a free-form format that
includes task descriptions and input/output examples.

• SimpleName Extraction: This prompt depicts the behav-
ioral characteristics of extracting the simple names of the
undeclared receiving objects and non-FQNs in the partial
code. It describes the task as “The input is java code,
the output is simplename in java code”. It also provides
examples of as many forms of simple names as possible,
such as “List”, “List<>”, “List[]”, and “List()”. For
example, “Set, String, HashSet” are extracted from the
code snippet “... Set<String> st = new HashSet<>();...”.

• SimpleName to FQN: This prompt depicts the behavioral
characteristics of converting simple names to FQNs. It
describe the task as “The input are simplenames, the out-
put are FQNs.”. It also provides examples of converting
various forms of simplename list to FQN. For example,
“IOException” is converted to “java.io.IOException”.

• Code Check: This prompt depicts the behavioral charac-
teristics of checking whether or not the code has syntax
error. It describes the task as ”The input is code, the
output is whether the code compilable.”. It also includes
examples of code with and without syntax errors. For
example, the code snippet “... List<String> ls == new
ArrayList<>();...” has syntax error.

• Code Fix: This prompt depicts the behavioral character-
istics of fixing the syntax error. It describes the task as
“The input is incompilable code , the output is compilable
code.” It also provides examples of illustrating code with
a syntax error and its corrected version. For example,
the uncompilable code “... List<String> ls == new
ArrayList<>();...” is converted to the compilable code
“... List<String> ls = new ArrayList<>();...”.

III. EXPERIMENT

In this section, we evaluate the accuracy of each unit, each
module, and the overall PCR-Chain framework.

A. Dataset & Metric

In this experiment, we use the Short-SO dataset from Stack
Overflow by Huang et al. [7], containing 120 uncompilable
partial code snippets from which we randomly selected 50
snippets. The evaluation metric for PCR-chain is accuracy.

B. Result and Analysis

1) Units Accuracy: The accuracy for each unit are shown
in the second column of Table I. For AI Unit of FQN



TABLE I
EVALUATION RESULTS OF MULTIPLE SCENARIOS

AI Units Acc Modules Acc Architecture Acc
SimpleName

Extraction 0.97 FQN
Inference 0.85

PCR-Chain 0.70SimepleName
to FQN 0.92

Code Check 0.82 Syntax
Error Fix 0.92Code Fix 0.84

inference Module, the unit SimpleName Extraction correctly
predicts 208 simple names out of 215 contained in the 50
code snippets, and the accuracy is 0.97. The unit SimpleName
to FQN correctly inferred 190 FQNs for 215 simple names,
and the accuracy is 0.88. For AI Units of Syntax Error Fix
Module evaluation, Of the 50 code snippets, 25 have syntax
errors and 25 do not. The unit Code Check correctly predicts
22 code snippets with syntax errors and 19 code snippets
without syntax errors, and the accuracy is 0.82. For the 25
code snippets with syntax errors, the unit Code Fix fixes 21
code snippets correctly, and the accuracy is 0.84.

2) Modules Accuracy: The accuracy for each module is
shown in the fourth columns of Table I. For FQN Inference
Module, among 215 simple names, 183 simple names were
correctly found and inferred the corresponding FQN with an
accuracy of 0.85. For Syntax Error Fix Module, it accepts
50 code snippets and returns 46 code snippets with no syntax
errors, with an accuracy of 0.92. Note that the accuracy of this
module is greater than its two sub-units. The reasons are as
follows: The unit Code Check made a mistake in identifying
6 code snippets without syntax errors as those with errors,
leading to a decrease in its accuracy. On the other hand, the
unit Code Fix successfully corrected the code snippets that
were identified as having errors, resulting in an improvement
in the module’s accuracy.

3) PCR-Chain Accuracy: The accuracy for PCR-Chain is
shown in the sixth columns of Table I. PCR-Chain fixes 35
out of 50 uncompilable partial codes to compilable, with an
accuracy of 0.70.

Our evaluation assesses each unit, module, and the overall
PCR-Chain. The high accuracy of the units confirms the
usefulness of the prompt design and lays the foundation for
high-quality modules. The successful execution of modules
shows the value of prompt composition in linking units
to achieve superior outcomes for higher-level tasks. The
efficient functioning of PCR-Chain validates the utility of the
prompt architecture in breaking down tasks into hierarchical
units and modules, connecting them, and blending AI and
non-AI unints. PCR-Chain also effectively resolves FQNs
and fixes last-mile syntax errors.

IV. RELATED WORK

Partial code is prevalent in online resource (e.g., Stack Over-
flow), and developers frequently copy-paste it into Integrated
Development Environments (IDEs) for reuse. However, the
unresolved type and last-mile syntax errors prevent partial
code from compiling. In the past, partial code program analysis
was used to solve this issue, but it was limited by a high

compilation overhead. [13] makes type inferences based on
abstract syntax tree, and [12] fixes syntax errors based on
program synthesis. Built on source code naturalness, recent
approaches have overcome this by fine-tuning a large language
model as a neural knowledge base of code elements using
the “pre-train, prompt and predict” paradigm from raw source
code. This minimizes the hte need for code compilation and
eliminates the limitations of partial code program analysis.
For example, Huang et al. utilize the prompt-tuned PCM to
resolve types [7], and Jiang et al. use a PCM fine-tuned by an
automated program repair task to fix syntax errors [26].

Our approach stands on the shoulder of the frozen PCM,
which differs from the supervised fine-tuning described above
in three ways: (1) Data Volumn. Jiang et al. [26] use 2.72
million examples while we only need 6 examples. Huang et
al. [7] utilize 361 thousand prompts, each with one example,
while we utilize two prompts with three examples each. (2)
Chain of Thoughts (CoT). Unlike the traditional approach
of presenting type inference as a one-step, fill-in-the-blank
task, we adopt a more nuanced approach by dividing type
inference into smaller and more manageable steps through the
use of CoT. Each step operates independently and the outputs
serve as inputs for the next, resulting in a cohesive Al chain.
(3) Context Sensitivity. Without Al chain, Huang’s method is
context-sensitive, requiring FQNs in the surrounding context
of to-be-infer simplename for best results. On the other hand,
with the Al chain, we extract the simple names from the partial
code and infer the FQNs independently, making type inference
unrelated to context.

In-context learning, like our approach, is used for other
purposes. Wang et al. [35] employ an informative prompt for
a single-step task, and [36]–[38] chain prompts to break a
multiple-task down into sub-tasks. PCR-Chain goes deeper
than a prompt chain, involving a prompt architecture (hier-
archical task breakdown, prompt composition, and a mix of
AI and non-AI units) and a prompt design.

V. CONCLUSION AND FUTURE WORK

In this paper, we are first to propose the global-level
prompt architecture and the local-level prompt design, rather
than a simple AI chain. Supported by them, we implement
PCR-Chain, an in-context learning-based partial code reuse
tool with four prompts on frozen Copilot. Our experiments
demonstrate the effectiveness of prompt architecture, prompt
design, and PCR-Chain. The tool’s source code and dataset
are publicly available on GitHub, allowing other researchers
to replicate and extend our work. The video will demonstrate
how to use our tool. Although PCR-Chain is limited to the Java
programming language, it is possible to adapt its use to other
programming languages because in-context learning requires
only a small number of examples in the prompt.

In the future, we intend to expand PCR-Chain into a
systematic and configurable AI module framework, allowing
us to build and organize a number of AI or non-AI modules
to perform various tasks such as single-step tasks, multi-step
tasks and nested-step tasks.
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